```
Printed Pages - 7
```


337312 (37)

BE (3 ${ }^{\text {rd }}$ Semester)
Examination, Nov.-Dec., 2021
Branch : Mechanical
NUMERICAL ANALYSIS \& COMPUTER PROG. (C \& C++)

Time Allowed : Three Hours
Maximum Marks : 80
Minimum Pass Marks : 28

Note : Part (a) of each question is compulsory. Attempt
any two parts from (b), (c) \& (d).
Q. 1. (a) Define absolute, relative and percentage
error.
2

337312 (37)
P.T.O.
(b) Solve using Newton-Raphson method: 7

$$
3 x=\cos x+1
$$

(c) Solve by Gauss-Seidal iteration method: 7

$$
x+y+54 z=110
$$

$$
27 x+6 y-z=85
$$

$$
6 x+15 y+2 z=72
$$

(d) Find the positive root of $X e^{x}=2$ by the
method of false position, correct upto four
places of decimal.
7
Q. 2. (a) Differentiate between curve fitting and an
interpolation. 2
(b) Find the best values of a and b in the law
$y=a e^{b x}$ by the method of least squares : 7

x	$:$	0	5	8	12	20
y	$:$	3	1.5	1	0.55	0.18

(c) Find the missing values: 7

x	0	5	10	15	20	25
y	6	10	-	17	-	31

(d) Derive Newton's forward and backward interpolation formula.
Q. 3. (a) Give the Taylor's series for $y(x)$ around

$$
x=x_{0} .
$$

(b) Derive the expression for Simpson's $\frac{1}{3}$ rd
rule.
(4)

$$
\begin{aligned}
& \int_{x_{0}}^{x_{0}+h} f(x) d x=\frac{h}{3}\left[\left\{f\left(x_{0}\right)+f\left(x_{n}\right)\right\}+\right. \\
& \left.4\left\{f\left(x_{1}\right)+f\left(x_{3}\right) \ldots\right\}+2\left\{f\left(x_{2}\right)+f\left(x_{4}\right)+\ldots . .\right\}\right]
\end{aligned}
$$

(c) Solve :

$$
y^{\prime}=y^{2}+x, y(0)=1
$$

using Taylor series method \& compute y(0.1)
and $y(0.2)$.
(d) Using Euler's modified method, find a
solution to equation :

$$
\frac{d y}{d x}=x+|\sqrt{y}|=f(x, y)
$$

with initial condition $y=1$ at, $x=0$ for the
range of $0 \leq x \leq 0.6$ in steps of 2 .
Q. 4. (a) State the condition for a general second
order linear partial differential equation to be
of 'elliptic' type.
(b) Evaluate the function $u(x, y)$ satisfying
$\nabla^{2} u=0$ at the lattice points, given the
boundary values as follows : 7

Use iterative method to obtain the solution.
(c) The transverse displacement u of a point at
a distance x from one end at any time satis-
fies $\frac{d^{2} u}{d t^{2}}=4 \frac{d^{2} u}{d x^{2}}$ with boundary conditions
$\mathrm{u}=0$ at $\mathrm{x}=0, \mathrm{t}>0$ and $\mathrm{u}=0$ at $\mathrm{x}=4, \mathrm{t}>0$
and initial condition.
7
$u=x(4-x), \frac{\partial u}{\partial t}=0, h=k$
$k=1 / 2$ and $0 \leq x \leq 4$.
(d) Find the values of $u(x, t)$ satisfying the
parabolic equation $\frac{\partial u}{\partial t}=4 \frac{\partial^{2} u}{\partial x^{2}}$ and the
boundary condition $u(0, t)=0=u(8, t)$
and $u(x, 0)=4 x-\frac{1}{2} x^{2}$ at the points $x=i$,
$i=0,1,2 \ldots \ldots 7$ and $t=\frac{1}{8} j j, j=0,1$,
2 5.
Q. 5. (a) Explain very briefly different types of 'Data

Type' in C language. 2
(b) Discuss different relational \& conditional operators available in C-language along with their precedance level. 7
(c) Write a ' C ' program to generate a series
$1,8,27,64 \ldots \ldots .$. upto ten terms. 7
(d) What is Array? How does it differ from ordinary variable? 7

